

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
TOTAL				

	Answer all questions in the spaces provided.	Do not writ outside the box
0 1	Coconut oil contains a triester with three identical R groups. This triester reacts with potassium hydroxide.	
	$\begin{array}{cccc} RCOO - CH_2 \\ RCOO - CH & + 3KOH & \longrightarrow & 3RCOOK + \\ RCOO - CH_2 & & & & & \\ \end{array}$	
01.1	Complete the equation by drawing the structure of the other product of this reaction in the box.	
	Name the type of compound shown by the formula RCOOK	
	Give one use for this type of compound. [3 marks]	
	Type of compound	
	Use	
0 1.2	The triester in coconut oil has a relative molecular mass, $M_r = 638.0$ In the equation shown at the start of Question 01 , R represents an alkyl group that can be written as CH ₃ (CH ₂) _n Deduce the value of n in CH ₂ (CH ₂) _n	
	Show your working. [3 marks]	
	n	

01.3 A 1.450 g sample of coconut oil is heated with 0.421 g of KOH in aqueous ethanol until all of the triester is hydrolysed.

The mixture is cooled.

The remaining KOH is neutralised by exactly 15.65 $\rm cm^3$ of 0.100 mol $\rm dm^{-3}$ HCl

Calculate the percentage by mass of the triester (M_r = 638.0) in the coconut oil.

[6 marks]

Do not write outside the

box

Percentage by mass

		Do not write
0 1.4	Suggest why aqueous ethanol is a suitable solvent when heating the coconut oil with KOH.	outside the box
	Give a safety precaution used when heating the mixture. Justify your choice.	
	[3 marks] Reason	
	Safety precaution	
	Justification	
		15

0 2	This question is about fuels.	Do not write outside the box
02.1	The petrol fraction obtained from crude oil can be used as fuel in cars.	
	State the meaning of fraction, as used in the term petrol fraction. [1 mark]	
02.2	Hexadecane ($C_{16}H_{34}$) can be cracked at high temperature to form petrol.	
	Complete the equation to show the cracking of one molecule of hexadecane to form hexane and cyclopentane only.	
	Give the name of a catalyst used in this cracking reaction. [3 marks]	
	$C_{16}H_{34} \rightarrow ___ + ___$ Catalyst	
02.3	Carbon dioxide is formed when petrol is burned. Carbon dioxide acts as a greenhouse gas when it absorbs infrared radiation.	
	Give a reason why carbon dioxide absorbs infrared radiation. [1 mark]	
	Question 2 continues on the next page	

Turn over ►

		Do not write
02.5	$HOCH_2CH_2NH_2$ can be represented as XNH_2 [HOCH_2CH_2NH_3] ⁺ can be represented as [XNH_3] ⁺	outside the box
	Draw the shape of XNH_2 and of $[XNH_3]^+$	
	State whether the H–N–H bond angle in XNH ₂ is greater than, the same as, or smaller than that in $[XNH_3]^+$	
	Explain your answer. [4 marks]	
	Shape of XNH_2 Shape of $[XNH_3]^+$	
	Bond angle	
	Explanation	
	Question 2 continues on the next page	

Turn over ►

[6 marks]

Do not write outside the box

8

02.6	Bioethanol is used as an alternative to fossil fuels.
	This statement appeared on a website.
	"The fact that bioethanol is a carbon-neutral fuel outweighs the environmental disadvantages of producing bioethanol."
	Evaluate this statement.
	In your answer you should include:an outline of how bioethanol is producedrelevant equations
	 analysis of the environmental impacts.

		Do not write outside the
0 3	A student does an experiment to determine a value for the enthalpy of combustion of heptane.	box
	Figure 2 shows some of the apparatus used.	
	Figure 2	
03.1	Design a table to record all the readings necessary to determine an experimental value for the enthalpy of combustion for heptane in this experiment. [2 marks]	
03.2	The student considered using a glass beaker on a tripod and gauze instead of the clamped copper calorimeter. Suggest two disadvantages of using a glass beaker on a tripod and gauze. [2 marks] Disadvantage 1 Disadvantage 2	

03.3	Suggest two reasons why the value of enthalpy of combustion from this experiment is less exothermic than a data book value.	Do not write outside the box
	[2 marks]	
	Reason 2	
0 3.4	Suggest one addition to this apparatus that would improve the accuracy of the enthalpy value obtained. [1 mark]	
		7
	Turn over for the next question	
	Turn over ►	

Turn over ►

This question is about equilibrium.

1 mol of a diester with molecular formula $C_7H_{12}O_4$ is added to 1 mol of water in the presence of a small amount of catalyst.

The mixture is left to reach equilibrium at a constant temperature.

 $C_7H_{12}O_4(I) + 2H_2O(I) \Rightarrow 2CH_3COOH(I) + HO(CH_2)_3OH(I)$

At equilibrium, χ mol of ethanoic acid are present in the mixture.

Complete **Table 2** by deducing the amounts, in terms of X, of the diester, water and diol present in the equilibrium mixture.

[3 marks]

Do not write outside the box

Amount in the mixture / mol						
Diester Water Acid Diol						
At the start	1	1	0	0		
At equilibrium			X			

Table 2

2 Deduce the structure of the diester in Question 05.1

[1 mark]

Question 5 continues on the next page

0 5 .

0 5.3

A new equilibrium mixture of the substances from Question **05.1** is prepared at a different temperature.

 $C_7H_{12}O_4(I) + 2H_2O(I) \rightleftharpoons 2CH_3COOH(I) + HO(CH_2)_3OH(I)$

Table 3 shows the amount of each substance in this new equilibrium mixture.

Table 3

Amount in the mixture / mol						
Diester Water Acid Diol						
At equilibrium	0.971	To be calculated	0.452	0.273		

The value of the equilibrium constant, K_c is 0.161 at this temperature.

Calculate the amount of water, in mol, in this new equilibrium mixture. Show your working.

[3 marks]

Do not write outside the

box

7

Amount of water

0 6	This question is about isomers with the	molecular formula C₅H₁₀O	Do not write outside the box
06.1	Draw the skeletal formula of a branched $C_5H_{10}O$ that is optically active.	l chain aldehyde with molecular formula [1 mark]	1
06.2	Describe how you distinguish between s	separate samples of the two enantiomers of	
		[2 marks]	I
			-
			-
			-
			-
06.3	Draw the <i>E</i> and <i>Z</i> forms of a structural i optical and geometric isomerism.	somer of $C_5H_{10}O$ that shows both	
		[2 marks]]
	<i>E</i> isomer	Z isomer	
	Question 6 continues	on the next page	
		Turn over I	•

2 1

		Do not write
0 8	This question is about making a diester from cyclohexanol.	box
	$\begin{array}{c} & & & \\ & &$	
08.1	State the type of reaction in step 1 .	
	Give the name of the reagent needed for step 1 . [2 marks]	
	Type of reaction	
	Reagent	
08.2	State the reagents needed and give equations for step 2 and step 3. Show the structure of Compound G in your equations. [4 marks] Step 2 reagent Step 2 equation	
	Step 3 reagent	
	Step 3 equation	

		Do not
08.3	Cyclohexane-1,2-diol reacts with ethanedioyl dichloride.	outside box
	Give the name of the mechanism for this reaction.	
	Complete the mechanism to show the formation of one ester link in the first step of this reaction.	
	[5 marks]	
	Mechanism name	
	Mechanism	
0 8.4	Suggest why chemists usually aim to design production methodswith fewer steps	
	 with a high percentage atom economy. [2 marks] 	
	Fewer steps	
	High percentage atom economy	
		13

09	This question is about the ozone layer in the upper atmosphere.	Do not write outside the box
09.1	State why the ozone layer is beneficial for living organisms. [1 mark]	
092	State how chlorofluorocarbons (CECs) form chlorine atoms in the	
	upper atmosphere. [1 mark]	
09.3	Give equations to show how chlorine atoms catalyse the decomposition of ozone. [2 marks]	
09.4	Hydrochlorofluorocarbons (HCFCs) have been used in place of CFCs. In the mechanism to make an HCFC from a fluoroalkane, two incomplete steps are shown.	
	Complete each step in the mechanism.	
	Give the name of the type of step shown by both these equations. [3 marks]	
	\longrightarrow •CHF ₂ + HCl	
	•CHF ₂ + Cl ₂ \rightarrow	
	Type of step	7

1 0	This question is about rates of reaction.	Do not write outside the box
	lodine and propanone react together in an acid-catalysed reaction	
	$CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + HI(aq)$	
	A student completed a series of experiments to determine the order of reaction with respect to iodine.	
	 Method Transfer 25 cm³ of 1.0 mol dm⁻³ propanone solution into a conical flask. Add 10 cm³ of 1.0 mol dm⁻³ HCl(aq) Add 25 cm³ of 5.0 × 10⁻³ mol dm⁻³ l₂(aq) and start a timer. At intervals of 1 minute, remove a 1.0 cm³ sample of the mixture and add each sample to a separate beaker containing an excess of NaHCO₃(aq) Titrate the contents of each beaker with a standard solution of sodium thiosulfate and record the volume of sodium thiosulfate used. 	
1 0.1	Suggest why the 1.0 cm ³ portions of the reaction mixture are added to an excess of	
	[2 marks]	
10.2	Suggest why the order of this reaction with respect to propanone can be ignored in this experiment. [2 marks]	
	Question 10 continues on the next page	

The volume of sodium thiosulfate solution used in each titration is proportional to the concentration of iodine in each beaker.

 Table 5 shows the results of the experiment.

Table 5		
Time / minutes	Volume of sodium thiosulfate solution / cm ³	
1	41	
2	35	
3	24	
4	22	
5	16	
6	10	

1 0. 3

Use the results in Table 5 to draw a graph of volume of sodium thiosulfate solution

[3 marks]

box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

